Proper Inference for Value Function in High-Dimensional Q-Learning for Dynamic Treatment Regimes
Wensheng Zhu,
Donglin Zeng and
Rui Song
Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1404-1417
Abstract:
Dynamic treatment regimes are a set of decision rules and each treatment decision is tailored over time according to patients’ responses to previous treatments as well as covariate history. There is a growing interest in development of correct statistical inference for optimal dynamic treatment regimes to handle the challenges of nonregularity problems in the presence of nonrespondents who have zero-treatment effects, especially when the dimension of the tailoring variables is high. In this article, we propose a high-dimensional Q-learning (HQ-learning) to facilitate the inference of optimal values and parameters. The proposed method allows us to simultaneously estimate the optimal dynamic treatment regimes and select the important variables that truly contribute to the individual reward. At the same time, hard thresholding is introduced in the method to eliminate the effects of the nonrespondents. The asymptotic properties for the parameter estimators as well as the estimated optimal value function are then established by adjusting the bias due to thresholding. Both simulation studies and real data analysis demonstrate satisfactory performance for obtaining the proper inference for the value function for the optimal dynamic treatment regimes. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1506341 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1404-1417
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1506341
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().