A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests
Qinshu Lian,
James S. Hodges and
Haitao Chu
Journal of the American Statistical Association, 2019, vol. 114, issue 527, 949-961
Abstract:
In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1476239 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:949-961
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1476239
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().