Inferring Atmospheric Release Characteristics in a Large Computer Experiment Using Bayesian Adaptive Splines
Devin Francom,
Bruno Sansó,
Vera Bulaevskaya,
Donald Lucas and
Matthew Simpson
Journal of the American Statistical Association, 2019, vol. 114, issue 528, 1450-1465
Abstract:
An atmospheric release of hazardous material, whether accidental or intentional, can be catastrophic for those in the path of the plume. Predicting the path of a plume based on characteristics of the release (location, amount, and duration) and meteorological conditions is an active research area highly relevant for emergency and long-term response to these releases. As a result, researchers have developed particle dispersion simulators to provide plume path predictions that incorporate release characteristics and meteorological conditions. However, since release characteristics and meteorological conditions are often unknown, the inverse problem is of great interest, that is, based on all the observations of the plume so far, what can be inferred about the release characteristics? This is the question we seek to answer using plume observations from a controlled release at the Diablo Canyon Nuclear Power Plant in Central California. With access to a large number of evaluations of a computationally expensive particle dispersion simulator that includes continuous and categorical inputs and spatio-temporal output, building a fast statistical surrogate model (or emulator) presents many statistical challenges, but is an essential tool for inverse modeling and sensitivity analysis. We achieve accurate emulation using Bayesian adaptive splines to model weights on empirical orthogonal functions. We use this emulator as well as appropriately identifiable simulator discrepancy and observational error models to calibrate the simulator, thus finding a posterior distribution of characteristics of the release. Since the release was controlled, these characteristics are known, making it possible to compare our findings to the truth. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1562933 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1450-1465
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1562933
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().