Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions
Zhengwu Zhang,
Maxime Descoteaux and
David B. Dunson
Journal of the American Statistical Association, 2019, vol. 114, issue 528, 1505-1517
Abstract:
In studying structural inter-connections in the human brain, it is common to first estimate fiber bundles connecting different regions relying on diffusion MRI. These fiber bundles act as highways for neural activity. Current statistical methods reduce the rich information into an adjacency matrix, with the elements containing a count of fibers or a mean diffusion feature along the fibers. The goal of this article is to avoid discarding the rich geometric information of fibers, developing flexible models for characterizing the population distribution of fibers between brain regions of interest within and across different individuals. We start by decomposing each fiber into a rotation matrix, shape and translation from a global reference curve. These components are viewed as data lying on a product space composed of different Euclidean spaces and manifolds. To nonparametrically model the distribution within and across individuals, we rely on a hierarchical mixture of product kernels specific to the component spaces. Taking a Bayesian approach to inference, we develop efficient methods for posterior sampling. The approach automatically produces clusters of fibers within and across individuals. Applying the method to Human Connectome Project data, we find interesting relationships between brain fiber geometry and reading ability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1574582 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1505-1517
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1574582
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().