EconPapers    
Economics at your fingertips  
 

The Blessings of Multiple Causes

Yixin Wang and David M. Blei

Journal of the American Statistical Association, 2019, vol. 114, issue 528, 1574-1596

Abstract: Causal inference from observational data is a vital problem, but it comes with strong assumptions. Most methods assume that we observe all confounders, variables that affect both the causal variables and the outcome variables. This assumption is standard but it is also untestable. In this article, we develop the deconfounder, a way to do causal inference with weaker assumptions than the traditional methods require. The deconfounder is designed for problems of multiple causal inference: scientific studies that involve multiple causes whose effects are simultaneously of interest. Specifically, the deconfounder combines unsupervised machine learning and predictive model checking to use the dependencies among multiple causes as indirect evidence for some of the unobserved confounders. We develop the deconfounder algorithm, prove that it is unbiased, and show that it requires weaker assumptions than traditional causal inference. We analyze its performance in three types of studies: semi-simulated data around smoking and lung cancer, semi-simulated data around genome-wide association studies, and a real dataset about actors and movie revenue. The deconfounder is an effective approach to estimating causal effects in problems of multiple causal inference. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1686987 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1574-1596

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1686987

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1574-1596