EconPapers    
Economics at your fingertips  
 

BET on Independence

Kai Zhang

Journal of the American Statistical Association, 2019, vol. 114, issue 528, 1620-1637

Abstract: We study the problem of nonparametric dependence detection. Many existing methods may suffer severe power loss due to nonuniform consistency, which we illustrate with a paradox. To avoid such power loss, we approach the nonparametric test of independence through the new framework of binary expansion statistics (BEStat) and binary expansion testing (BET), which examine dependence through a novel binary expansion filtration approximation of the copula. Through a Hadamard transform, we find that the symmetry statistics in the filtration are complete sufficient statistics for dependence. These statistics are also uncorrelated under the null. By using symmetry statistics, the BET avoids the problem of nonuniform consistency and improves upon a wide class of commonly used methods (a) by achieving the minimax rate in sample size requirement for reliable power and (b) by providing clear interpretations of global relationships upon rejection of independence. The binary expansion approach also connects the symmetry statistics with the current computing system to facilitate efficient bitwise implementation. We illustrate the BET with a study of the distribution of stars in the night sky and with an exploratory data analysis of the TCGA breast cancer data. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1537921 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1620-1637

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1537921

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1620-1637