EconPapers    
Economics at your fingertips  
 

Covariate Information Matrix for Sufficient Dimension Reduction

Weixin Yao, Debmalya Nandy, Bruce G. Lindsay and Francesca Chiaromonte

Journal of the American Statistical Association, 2019, vol. 114, issue 528, 1752-1764

Abstract: Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in terms of their regression information. Compared to other popular SDR methods, CIM does not require distributional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of the CS. Results of simulations and real data applications demonstrate superior or competitive performance of CIM compared to that of some other SDR methods. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1515080 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1752-1764

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1515080

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1752-1764