Efficient Signal Inclusion With Genomic Applications
X. Jessie Jeng,
Teng Zhang and
Jung-Ying Tzeng
Journal of the American Statistical Association, 2019, vol. 114, issue 528, 1787-1799
Abstract:
This article addresses the challenge of efficiently capturing a high proportion of true signals for subsequent data analyses when sample sizes are relatively limited with respect to data dimension. We propose the signal missing rate (SMR) as a new measure for false-negative control to account for the variability of false-negative proportion. Novel data-adaptive procedures are developed to control SMR without incurring many unnecessary false positives under dependence. We justify the efficiency and adaptivity of the proposed methods via theory and simulation. The proposed methods are applied to GWAS on human height to effectively remove irrelevant single nucleotide polymorphisms (SNPs) while retaining a high proportion of relevant SNPs for subsequent polygenic analysis. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1518236 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1787-1799
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1518236
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().