Bayesian Repulsive Gaussian Mixture Model
Fangzheng Xie and
Yanxun Xu
Journal of the American Statistical Association, 2020, vol. 115, issue 529, 187-203
Abstract:
We develop a general class of Bayesian repulsive Gaussian mixture models that encourage well-separated clusters, aiming at reducing potentially redundant components produced by independent priors for locations (such as the Dirichlet process). The asymptotic results for the posterior distribution of the proposed models are derived, including posterior consistency and posterior contraction rate in the context of nonparametric density estimation. More importantly, we show that compared to the independent prior on the component centers, the repulsive prior introduces additional shrinkage effect on the tail probability of the posterior number of components, which serves as a measurement of the model complexity. In addition, a generalized urn model that allows a random number of components and correlated component centers is developed based on the exchangeable partition distribution, which gives rise to the corresponding blocked-collapsed Gibbs sampler for posterior inference. We evaluate the performance and demonstrate the advantages of the proposed methodology through extensive simulation studies and real data analysis. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1537918 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:187-203
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1537918
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().