Debiased Inference on Treatment Effect in a High-Dimensional Model
Jingshen Wang,
Xuming He and
Gongjun Xu
Journal of the American Statistical Association, 2020, vol. 115, issue 529, 442-454
Abstract:
This article concerns the potential bias in statistical inference on treatment effects when a large number of covariates are present in a linear or partially linear model. While the estimation bias in an under-fitted model is well understood, we address a lesser-known bias that arises from an over-fitted model. The over-fitting bias can be eliminated through data splitting at the cost of statistical efficiency, and we show that smoothing over random data splits can be pursued to mitigate the efficiency loss. We also discuss some of the existing methods for debiased inference and provide insights into their intrinsic bias-variance trade-off, which leads to an improvement in bias controls. Under appropriate conditions, we show that the proposed estimators for the treatment effects are asymptotically normal and their variances can be well estimated. We discuss the pros and cons of various methods both theoretically and empirically, and show that the proposed methods are valuable options in post-selection inference. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1558062 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:442-454
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1558062
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().