EconPapers    
Economics at your fingertips  
 

Debiased Inference on Treatment Effect in a High-Dimensional Model

Jingshen Wang, Xuming He and Gongjun Xu

Journal of the American Statistical Association, 2020, vol. 115, issue 529, 442-454

Abstract: This article concerns the potential bias in statistical inference on treatment effects when a large number of covariates are present in a linear or partially linear model. While the estimation bias in an under-fitted model is well understood, we address a lesser-known bias that arises from an over-fitted model. The over-fitting bias can be eliminated through data splitting at the cost of statistical efficiency, and we show that smoothing over random data splits can be pursued to mitigate the efficiency loss. We also discuss some of the existing methods for debiased inference and provide insights into their intrinsic bias-variance trade-off, which leads to an improvement in bias controls. Under appropriate conditions, we show that the proposed estimators for the treatment effects are asymptotically normal and their variances can be well estimated. We discuss the pros and cons of various methods both theoretically and empirically, and show that the proposed methods are valuable options in post-selection inference. Supplementary materials for this article are available online.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1558062 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:442-454

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1558062

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:442-454