Demand Models With Random Partitions
Adam N. Smith and
Greg M. Allenby
Journal of the American Statistical Association, 2020, vol. 115, issue 529, 47-65
Abstract:
Many economic models of consumer demand require researchers to partition sets of products or attributes prior to the analysis. These models are common in applied problems when the product space is large or spans multiple categories. While the partition is traditionally fixed a priori, we let the partition be a model parameter and propose a Bayesian method for inference. The challenge is that demand systems are commonly multivariate models that are not conditionally conjugate with respect to partition indices, precluding the use of Gibbs sampling. We solve this problem by constructing a new location-scale partition distribution that can generate random-walk Metropolis–Hastings proposals and also serve as a prior. Our method is illustrated in the context of a store-level category demand model, where we find that allowing for partition uncertainty is important for preserving model flexibility, improving demand forecasts, and learning about the structure of demand. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1604360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:47-65
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1604360
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().