EconPapers    
Economics at your fingertips  
 

Mapping Tumor-Specific Expression QTLs in Impure Tumor Samples

DouglasR. Wilson, JosephG. Ibrahim and Wei Sun

Journal of the American Statistical Association, 2020, vol. 115, issue 529, 79-89

Abstract: The study of gene expression quantitative trait loci (eQTL) is an effective approach to illuminate the functional roles of genetic variants. Computational methods have been developed for eQTL mapping using gene expression data from microarray or RNA-seq technology. Application of these methods for eQTL mapping in tumor tissues is problematic because tumor tissues are composed of both tumor and infiltrating normal cells (e.g., immune cells) and eQTL effects may vary between tumor and infiltrating normal cells. To address this challenge, we have developed a new method for eQTL mapping using RNA-seq data from tumor samples. Our method separately estimates the eQTL effects in tumor and infiltrating normal cells using both total expression and allele-specific expression (ASE). We demonstrate that our method controls Type I error rate and has higher power than some alternative approaches. We applied our method to study RNA-seq data from The Cancer Genome Atlas and illustrated the similarities and differences of eQTL effects in tumor and normal cells. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1609968 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:79-89

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1609968

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:79-89