EconPapers    
Economics at your fingertips  
 

Quantile Function on Scalar Regression Analysis for Distributional Data

Hojin Yang, Veerabhadran Baladandayuthapani, Arvind U.K. Rao and Jeffrey S. Morris

Journal of the American Statistical Association, 2020, vol. 115, issue 529, 90-106

Abstract: Radiomics involves the study of tumor images to identify quantitative markers explaining cancer heterogeneity. The predominant approach is to extract hundreds to thousands of image features, including histogram features comprised of summaries of the marginal distribution of pixel intensities, which leads to multiple testing problems and can miss out on insights not contained in the selected features. In this paper, we present methods to model the entire marginal distribution of pixel intensities via the quantile function as functional data, regressed on a set of demographic, clinical, and genetic predictors to investigate their effects of imaging-based cancer heterogeneity. We call this approach quantile functional regression, regressing subject-specific marginal distributions across repeated measurements on a set of covariates, allowing us to assess which covariates are associated with the distribution in a global sense, as well as to identify distributional features characterizing these differences, including mean, variance, skewness, heavy-tailedness, and various upper and lower quantiles. To account for smoothness in the quantile functions, account for intrafunctional correlation, and gain statistical power, we introduce custom basis functions we call quantlets that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given dataset and containing a Gaussian subspace so non-Gaussianness can be assessed. We fit this model using a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and provides fully Bayesian inference after fitting a Markov chain Monte Carlo. We demonstrate the benefit of the basis space modeling through simulation studies, and apply the method to Magnetic resonance imaging (MRI)-based radiomic dataset from Glioblastoma Multiforme to relate imaging-based quantile functions to various demographic, clinical, and genetic predictors, finding specific differences in tumor pixel intensity distribution between males and females and between tumors with and without DDIT3 mutations. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1609969 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:90-106

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1609969

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:90-106