EconPapers    
Economics at your fingertips  
 

Robust Clustering With Subpopulation-Specific Deviations

Briana J. K. Stephenson, Amy H. Herring and Andrew Olshan

Journal of the American Statistical Association, 2020, vol. 115, issue 530, 521-537

Abstract: The National Birth Defects Prevention Study (NBDPS) is a case-control study of birth defects conducted across 10 U.S. states. Researchers are interested in characterizing the etiologic role of maternal diet, collected using a food frequency questionnaire. Because diet is multidimensional, dimension reduction methods such as cluster analysis are often used to summarize dietary patterns. In a large, heterogeneous population, traditional clustering methods, such as latent class analysis, used to estimate dietary patterns can produce a large number of clusters due to a variety of factors, including study size and regional diversity. These factors result in a loss of interpretability of patterns that may differ due to minor consumption changes. Based on adaptation of the local partition process, we propose a new method, robust profile clustering, to handle these data complexities. Here, participants may be clustered at two levels: (1) globally, where women are assigned to an overall population-level cluster via an overfitted finite mixture model, and (2) locally, where regional variations in diet are accommodated via a beta-Bernoulli process dependent on subpopulation differences. We use our method to analyze the NBDPS data, deriving prepregnancy dietary patterns for women in the NBDPS while accounting for regional variability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1611583 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:530:p:521-537

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1611583

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:521-537