Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes
Zhengling Qi,
Dacheng Liu,
Haoda Fu and
Yufeng Liu
Journal of the American Statistical Association, 2020, vol. 115, issue 530, 678-691
Abstract:
Estimating an optimal individualized treatment rule (ITR) based on patients’ information is an important problem in precision medicine. An optimal ITR is a decision function that optimizes patients’ expected clinical outcomes. Many existing methods in the literature are designed for binary treatment settings with the interest of a continuous outcome. Much less work has been done on estimating optimal ITRs in multiple treatment settings with good interpretations. In this article, we propose angle-based direct learning (AD-learning) to efficiently estimate optimal ITRs with multiple treatments. Our proposed method can be applied to various types of outcomes, such as continuous, survival, or binary outcomes. Moreover, it has an interesting geometric interpretation on the effect of different treatments for each individual patient, which can help doctors and patients make better decisions. Finite sample error bounds have been established to provide a theoretical guarantee for AD-learning. Finally, we demonstrate the superior performance of our method via an extensive simulation study and real data applications. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1529597 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:530:p:678-691
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1529597
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().