Smoothing With Couplings of Conditional Particle Filters
Pierre E. Jacob,
Fredrik Lindsten and
Thomas B. Schön
Journal of the American Statistical Association, 2020, vol. 115, issue 530, 721-729
Abstract:
In state–space models, smoothing refers to the task of estimating a latent stochastic process given noisy measurements related to the process. We propose an unbiased estimator of smoothing expectations. The lack-of-bias property has methodological benefits: independent estimators can be generated in parallel, and CI can be constructed from the central limit theorem to quantify the approximation error. To design unbiased estimators, we combine a generic debiasing technique for Markov chains, with a Markov chain Monte Carlo algorithm for smoothing. The resulting procedure is widely applicable and we show in numerical experiments that the removal of the bias comes at a manageable increase in variance. We establish the validity of the proposed estimators under mild assumptions. Numerical experiments are provided on toy models, including a setting of highly informative observations, and for a realistic Lotka–Volterra model with an intractable transition density. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1548856 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:530:p:721-729
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1548856
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().