Informed Proposals for Local MCMC in Discrete Spaces
Giacomo Zanella
Journal of the American Statistical Association, 2020, vol. 115, issue 530, 852-865
Abstract:
There is a lack of methodological results to design efficient Markov chain Monte Carlo ( MCMC) algorithms for statistical models with discrete-valued high-dimensional parameters. Motivated by this consideration, we propose a simple framework for the design of informed MCMC proposals (i.e., Metropolis–Hastings proposal distributions that appropriately incorporate local information about the target) which is naturally applicable to discrete spaces. Using Peskun-type comparisons of Markov kernels, we explicitly characterize the class of asymptotically optimal proposal distributions under this framework, which we refer to as locally balanced proposals. The resulting algorithms are straightforward to implement in discrete spaces and provide orders of magnitude improvements in efficiency compared to alternative MCMC schemes, including discrete versions of Hamiltonian Monte Carlo. Simulations are performed with both simulated and real datasets, including a detailed application to Bayesian record linkage. A direct connection with gradient-based MCMC suggests that locally balanced proposals can be seen as a natural way to extend the latter to discrete spaces. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1585255 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:530:p:852-865
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1585255
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().