Additive Functional Regression for Densities as Responses
Kyunghee Han,
Hans-Georg Müller and
Byeong U. Park
Journal of the American Statistical Association, 2020, vol. 115, issue 530, 997-1010
Abstract:
We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increasingly encountered in statistical analysis and there is a need for flexible regression models that accommodate random densities as responses. Such models are of special interest for multivariate continuous predictors, where unrestricted nonparametric regression approaches are subject to the curse of dimensionality. Additive models can be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of flexibility. This motivates the development of additive regression models for situations where multivariate continuous predictors are coupled with densities as responses. To overcome the problem that distributions do not form a vector space, we utilize a class of transformations that map densities to unrestricted square integrable functions and then deploy an additive functional regression model to fit the responses in the unrestricted space, finally transforming back to density space. We implement the proposed additive model with an extended version of smooth backfitting and establish the consistency of this approach, including rates of convergence. The proposed method is illustrated with an application to the distributions of baby names in the United States.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1604365 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:530:p:997-1010
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1604365
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().