EconPapers    
Economics at your fingertips  
 

Bayesian Nonparametric Policy Search With Application to Periodontal Recall Intervals

Qian Guan, Brian J. Reich, Eric B. Laber and Dipankar Bandyopadhyay

Journal of the American Statistical Association, 2020, vol. 115, issue 531, 1066-1078

Abstract: Tooth loss from periodontal disease is a major public health burden in the United States. Standard clinical practice is to recommend a dental visit every six months; however, this practice is not evidence-based, and poor dental outcomes and increasing dental insurance premiums indicate room for improvement. We consider a tailored approach that recommends recall time based on patient characteristics and medical history to minimize disease progression without increasing resource expenditures. We formalize this method as a dynamic treatment regime which comprises a sequence of decisions, one per stage of intervention, that follow a decision rule which maps current patient information to a recommendation for their next visit time. The dynamics of periodontal health, visit frequency, and patient compliance are complex, yet the estimated optimal regime must be interpretable to domain experts if it is to be integrated into clinical practice. We combine nonparametric Bayesian dynamics modeling with policy-search algorithms to estimate the optimal dynamic treatment regime within an interpretable class of regimes. Both simulation experiments and application to a rich database of electronic dental records from the HealthPartners HMO shows that our proposed method leads to better dental health without increasing the average recommended recall time relative to competing methods. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1660169 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1066-1078

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1660169

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1066-1078