Distance-Based Analysis of Ordinal Data and Ordinal Time Series
Christian H. Weiß
Journal of the American Statistical Association, 2020, vol. 115, issue 531, 1189-1200
Abstract:
The dissimilarity of ordinal categories can be expressed with a distance measure. A unified approach relying on expected distances is proposed to obtain well-interpretable measures of location, dispersion, or symmetry of random variables, as well as measures of serial dependence within a given process. For special types of distance, these analytic tools lead to known approaches for ordinal or real-valued random variables. We also analyze the sample counterparts of the proposed measures and derive asymptotic results for practically important cases in ordinal data and time series analysis. Two real applications about the economic situation in Germany and the credit rating of European countries are presented. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1604370 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1189-1200
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1604370
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().