Feature Selection by Canonical Correlation Search in High-Dimensional Multiresponse Models With Complex Group Structures
Shan Luo and
Zehua Chen
Journal of the American Statistical Association, 2020, vol. 115, issue 531, 1227-1235
Abstract:
High-dimensional multiresponse models with complex group structures in both the response variables and the covariates arise from current researches in important fields such as genetics and medicine. However, no enough research has been done on such models. One of a few researches, if not the only one, is the article by Li, Nan, and Zhu where the sparse group Lasso approach is extended to such models. In this article, we propose a novel approach named the sequential canonical correlation search (SCCS) procedure. In the SCCS procedure, the nonzero group by group blocks of regression coefficients are searched stepwise using a canonical correlation measure. Each step of the procedure consists of a block selection and a sparsity identification. The model selection criterion, EBIC, is used as the stopping rule of the procedure. We establish the selection consistency of the SCCS procedure and conduct simulation studies for the comparison of existing methods. The SCCS procedure has two advantages over the sparse grouped Lasso method: (i) it is more accurate in the identification of nonzero coefficient blocks and their nonzero entries, and (ii) its implementation is not limited by the dimensionality of the models and requires much less computation. A real example in genetic studies is also considered. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1609972 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1227-1235
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1609972
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().