Comparing and Weighting Imperfect Models Using D-Probabilities
Meng Li and
David B. Dunson
Journal of the American Statistical Association, 2020, vol. 115, issue 531, 1349-1360
Abstract:
We propose a new approach for assigning weights to models using a divergence-based method (D-probabilities), relying on evaluating parametric models relative to a nonparametric Bayesian reference using Kullback–Leibler divergence. D-probabilities are useful in goodness-of-fit assessments, in comparing imperfect models, and in providing model weights to be used in model aggregation. D-probabilities avoid some of the disadvantages of Bayesian model probabilities, such as large sensitivity to prior choice, and tend to place higher weight on a greater diversity of models. In an application to linear model selection against a Gaussian process reference, we provide simple analytic forms for routine implementation and show that D-probabilities automatically penalize model complexity. Some asymptotic properties are described, and we provide interesting probabilistic interpretations of the proposed model weights. The framework is illustrated through simulation examples and an ozone data application. Supplementary materials for this aricle are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1611140 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1349-1360
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1611140
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().