Optimal Sparse Linear Prediction for Block-missing Multi-modality Data Without Imputation
Guan Yu,
Quefeng Li,
Dinggang Shen and
Yufeng Liu
Journal of the American Statistical Association, 2020, vol. 115, issue 531, 1406-1419
Abstract:
In modern scientific research, data are often collected from multiple modalities. Since different modalities could provide complementary information, statistical prediction methods using multimodality data could deliver better prediction performance than using single modality data. However, one special challenge for using multimodality data is related to block-missing data. In practice, due to dropouts or the high cost of measures, the observations of a certain modality can be missing completely for some subjects. In this paper, we propose a new direct sparse regression procedure using covariance from multimodality data (DISCOM). Our proposed DISCOM method includes two steps to find the optimal linear prediction of a continuous response variable using block-missing multimodality predictors. In the first step, rather than deleting or imputing missing data, we make use of all available information to estimate the covariance matrix of the predictors and the cross-covariance vector between the predictors and the response variable. The proposed new estimate of the covariance matrix is a linear combination of the identity matrix, the estimates of the intra-modality covariance matrix and the cross-modality covariance matrix. Flexible estimates for both the sub-Gaussian and heavy-tailed cases are considered. In the second step, based on the estimated covariance matrix and the estimated cross-covariance vector, an extended Lasso-type estimator is used to deliver a sparse estimate of the coefficients in the optimal linear prediction. The number of samples that are effectively used by DISCOM is the minimum number of samples with available observations from two modalities, which can be much larger than the number of samples with complete observations from all modalities. The effectiveness of the proposed method is demonstrated by theoretical studies, simulated examples, and a real application from the Alzheimer’s Disease Neuroimaging Initiative. The comparison between DISCOM and some existing methods also indicates the advantages of our proposed method.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1632079 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1406-1419
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1632079
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().