EconPapers    
Economics at your fingertips  
 

Bayesian Inference for Sequential Treatments Under Latent Sequential Ignorability

Federico Ricciardi, Alessandra Mattei and Fabrizia Mealli

Journal of the American Statistical Association, 2020, vol. 115, issue 531, 1498-1517

Abstract: We focus on causal inference for longitudinal treatments, where units are assigned to treatments at multiple time points, aiming to assess the effect of different treatment sequences on an outcome observed at a final point. A common assumption in similar studies is sequential ignorability (SI): treatment assignment at each time point is assumed independent of future potential outcomes given past observed outcomes and covariates. SI is questionable when treatment participation depends on individual choices, and treatment assignment may depend on unobservable quantities associated with future outcomes. We rely on principal stratification to formulate a relaxed version of SI: latent sequential ignorability (LSI) assumes that treatment assignment is conditionally independent on future potential outcomes given past treatments, covariates, and principal stratum membership, a latent variable defined by the joint value of observed and missing intermediate outcomes. We evaluate SI and LSI, using theoretical arguments and simulation studies to investigate the performance of the two assumptions when one holds and inference is conducted under both. Simulations show that when SI does not hold, inference performed under SI leads to misleading conclusions. Conversely, LSI generally leads to correct posterior distributions, irrespective of which assumption holds.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1623039 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1498-1517

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1623039

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1498-1517