Testing the Predictability of U.S. Housing Price Index Returns Based on an IVX-AR Model
Bingduo Yang,
Wei Long,
Liang Peng and
Zongwu Cai
Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1598-1619
Abstract:
We use ten common macroeconomic variables to test for the predictability of the quarterly growth rate of house price index (HPI) in the United States during 1975:Q1–2018:Q2. We extend the instrumental variable based Wald statistic (IVX-KMS) proposed by Kostakis, Magdalinos, and Stamatogiannis to a new instrumental variable based Wald statistic (IVX-AR) which accounts for serial correlation and heteroscedasticity in the error terms of the linear predictive regression model. Simulation results show that the proposed IVX-AR exhibits excellent size control regardless of the degree of serial correlation in the error terms and the persistency in the predictive variables, while IVX-KMS displays severe size distortions. The empirical results indicate that the percentage of residential fixed investment in GDP is fairly a robust predictor of the growth rate of HPI. However, other macroeconomic variables’ strong predictive ability detected by IVX-KMS is likely to be driven by the highly correlated error terms in the predictive regressions and thus becomes insignificant when the proposed IVX-AR method is implemented. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1686392 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1598-1619
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1686392
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().