EconPapers    
Economics at your fingertips  
 

Nonparametric Bayesian Instrumental Variable Analysis: Evaluating Heterogeneous Effects of Coronary Arterial Access Site Strategies

Samrachana Adhikari, Sherri Rose and Sharon-Lise Normand

Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1635-1644

Abstract: Percutaneous coronary interventions (PCIs) are nonsurgical procedures to open blocked blood vessels to the heart, frequently using a catheter to place a stent. The catheter can be inserted into the blood vessels using an artery in the groin or an artery in the wrist. Because clinical trials have indicated that access via the wrist may result in fewer post procedure complications, shortening the length of stay, and ultimately cost less than groin access, adoption of access via the wrist has been encouraged. However, patients treated in usual care are likely to differ from those participating in clinical trials, and there is reason to believe that the effectiveness of wrist access may differ between males and females. Moreover, the choice of artery access strategy is likely to be influenced by patient or physician unmeasured factors. To study the effectiveness of the two artery access site strategies on hospitalization charges, we use data from a state-mandated clinical registry including 7963 patients undergoing PCI. A hierarchical Bayesian likelihood-based instrumental variable analysis under a latent index modeling framework is introduced to jointly model outcomes and treatment status. Our approach accounts for unobserved heterogeneity via a latent factor structure, and permits nonparametric error distributions with Dirichlet process mixture models. Our results demonstrate that artery access in the wrist reduces hospitalization charges compared to access in the groin, with a higher mean reduction for male patients.Supplementary materials for this article are available online.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1688663 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1635-1644

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1688663

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1635-1644