EconPapers    
Economics at your fingertips  
 

Calibration for Computer Experiments With Binary Responses and Application to Cell Adhesion Study

Chih-Li Sung, Ying Hung, William Rittase, Cheng Zhu and C. F. J. Wu

Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1664-1674

Abstract: Calibration refers to the estimation of unknown parameters which are present in computer experiments but not available in physical experiments. An accurate estimation of these parameters is important because it provides a scientific understanding of the underlying system which is not available in physical experiments. Most of the work in the literature is limited to the analysis of continuous responses. Motivated by a study of cell adhesion experiments, we propose a new calibration framework for binary responses. Its application to the T cell adhesion data provides insight into the unknown values of the kinetic parameters which are difficult to determine by physical experiments due to the limitation of the existing experimental techniques. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1699419 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1664-1674

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1699419

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1664-1674