Optimal Tradeoffs in Matched Designs Comparing US-Trained and Internationally Trained Surgeons
Samuel D. Pimentel and
Rachel R. Kelz
Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1675-1688
Abstract:
Does receiving a medical education outside the United States impact a surgeon’s performance? We study this question by matching operations performed by internationally trained surgeons to those performed by US-trained surgeons in reanalysis of a large health outcomes study. An effective matched design must achieve several goals, including balancing covariate distributions marginally, ensuring units within individual pairs have similar values on key covariates, and using a sufficiently large sample from the raw data. Yet in our study, optimizing some of these goals forces less desirable results on others. We address such tradeoffs from a multi-objective optimization perspective by creating matched designs that are Pareto optimal with respect to two goals. We provide general tools for generating representative subsets of Pareto optimal solution sets and articulate how they can be used to improve decision-making in observational study design. In the motivating surgical outcomes study, formulating a multi-objective version of the problem helps us balance an important variable without sacrificing two other design goals, average closeness of matched pairs on a multivariate distance and size of the final matched sample. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1720693 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1675-1688
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1720693
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().