Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications
Yunxiao Chen,
Xiaoou Li and
Siliang Zhang
Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1756-1770
Abstract:
Abstract–Latent factor models are widely used to measure unobserved latent traits in social and behavioral sciences, including psychology, education, and marketing. When used in a confirmatory manner, design information is incorporated as zero constraints on corresponding parameters, yielding structured (confirmatory) latent factor models. In this article, we study how such design information affects the identifiability and the estimation of a structured latent factor model. Insights are gained through both asymptotic and nonasymptotic analyses. Our asymptotic results are established under a regime where both the number of manifest variables and the sample size diverge, motivated by applications to large-scale data. Under this regime, we define the structural identifiability of the latent factors and establish necessary and sufficient conditions that ensure structural identifiability. In addition, we propose an estimator which is shown to be consistent and rate optimal when structural identifiability holds. Finally, a nonasymptotic error bound is derived for this estimator, through which the effect of design information is further quantified. Our results shed lights on the design of large-scale measurement in education and psychology and have important implications on measurement validity and reliability.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1635485 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1756-1770
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1635485
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().