IPAD: Stable Interpretable Forecasting with Knockoffs Inference
Yingying Fan,
Jinchi Lv,
Mahrad Sharifvaghefi and
Yoshimasa Uematsu
Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1822-1834
Abstract:
Interpretability and stability are two important features that are desired in many contemporary big data applications arising in statistics, economics, and finance. While the former is enjoyed to some extent by many existing forecasting approaches, the latter in the sense of controlling the fraction of wrongly discovered features which can enhance greatly the interpretability is still largely underdeveloped. To this end, in this article, we exploit the general framework of model-X knockoffs introduced recently in Candès, Fan, Janson and Lv [(2018), “Panning for Gold: ‘model X’ Knockoffs for High Dimensional Controlled Variable Selection,” Journal of the Royal Statistical Society, Series B, 80, 551–577], which is nonconventional for reproducible large-scale inference in that the framework is completely free of the use of p-values for significance testing, and suggest a new method of intertwined probabilistic factors decoupling (IPAD) for stable interpretable forecasting with knockoffs inference in high-dimensional models. The recipe of the method is constructing the knockoff variables by assuming a latent factor model that is exploited widely in economics and finance for the association structure of covariates. Our method and work are distinct from the existing literature in which we estimate the covariate distribution from data instead of assuming that it is known when constructing the knockoff variables, our procedure does not require any sample splitting, we provide theoretical justifications on the asymptotic false discovery rate control, and the theory for the power analysis is also established. Several simulation examples and the real data analysis further demonstrate that the newly suggested method has appealing finite-sample performance with desired interpretability and stability compared to some popularly used forecasting methods. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1654878 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1822-1834
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1654878
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().