EconPapers    
Economics at your fingertips  
 

Fixed Effects Testing in High-Dimensional Linear Mixed Models

Jelena Bradic, Gerda Claeskens and Thomas Gueuning

Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1835-1850

Abstract: Many scientific and engineering challenges—ranging from pharmacokinetic drug dosage allocation and personalized medicine to marketing mix (4Ps) recommendations—require an understanding of the unobserved heterogeneity to develop the best decision making-processes. In this article, we develop a hypothesis test and the corresponding p-value for testing for the significance of the homogeneous structure in linear mixed models. A robust matching moment construction is used for creating a test that adapts to the size of the model sparsity. When unobserved heterogeneity at a cluster level is constant, we show that our test is both consistent and unbiased even when the dimension of the model is extremely high. Our theoretical results rely on a new family of adaptive sparse estimators of the fixed effects that do not require consistent estimation of the random effects. Moreover, our inference results do not require consistent model selection. We showcase that moment matching can be extended to nonlinear mixed effects models and to generalized linear mixed effects models. In numerical and real data experiments, we find that the developed method is extremely accurate, that it adapts to the size of the underlying model and is decidedly powerful in the presence of irrelevant covariates.Supplementary materials for this article are available online.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1660172 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1835-1850

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1660172

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1835-1850