EconPapers    
Economics at your fingertips  
 

Deep Knockoffs

Yaniv Romano, Matteo Sesia and Emmanuel Candès

Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1861-1872

Abstract: This article introduces a machine for sampling approximate model-X knockoffs for arbitrary and unspecified data distributions using deep generative models. The main idea is to iteratively refine a knockoff sampling mechanism until a criterion measuring the validity of the produced knockoffs is optimized; this criterion is inspired by the popular maximum mean discrepancy in machine learning and can be thought of as measuring the distance to pairwise exchangeability between original and knockoff features. By building upon the existing model-X framework, we thus obtain a flexible and model-free statistical tool to perform controlled variable selection. Extensive numerical experiments and quantitative tests confirm the generality, effectiveness, and power of our deep knockoff machines. Finally, we apply this new method to a real study of mutations linked to changes in drug resistance in the human immunodeficiency virus. Supplementary materials for this article are available online.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1660174 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1861-1872

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1660174

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1861-1872