EconPapers    
Economics at your fingertips  
 

Revealing Subgroup Structure in Ranked Data Using a Bayesian WAND

S. R. Johnson, D. A. Henderson and R. J. Boys

Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1888-1901

Abstract: Ranked data arise in many areas of application ranging from the ranking of up-regulated genes for cancer to the ranking of academic statistics journals. Complications can arise when rankers do not report a full ranking of all entities; for example, they might only report their top-M ranked entities after seeing some or all entities. It can also be useful to know whether rankers are equally informative, and whether some entities are effectively judged to be exchangeable. Revealing subgroup structure in the data may also be helpful in understanding the distribution of ranker views. In this paper, we propose a flexible Bayesian nonparametric model for identifying heterogeneous structure and ranker reliability in ranked data. The model is a weighted adapted nested Dirichlet (WAND) process mixture of Plackett–Luce models and inference proceeds through a simple and efficient Gibbs sampling scheme for posterior sampling. The richness of information in the posterior distribution allows us to infer many details of the structure both between ranker groups and between entity groups (within-ranker groups). Our modeling framework also facilitates a flexible representation of the posterior predictive distribution. This flexibility is important as we propose to use the posterior predictive distribution as the basis for addressing the rank aggregation problem, and also for identifying lack of model fit. The methodology is illustrated using several simulation studies and real data examples. Supplementary materials for this article are available online.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1665528 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1888-1901

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1665528

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1888-1901