Improved Small-Sample Estimation of Nonlinear Cross-Validated Prediction Metrics
David Benkeser,
Maya Petersen and
Mark J. van der Laan
Journal of the American Statistical Association, 2020, vol. 115, issue 532, 1917-1932
Abstract:
When predicting an outcome is the scientific goal, one must decide on a metric by which to evaluate the quality of predictions. We consider the problem of measuring the performance of a prediction algorithm with the same data that were used to train the algorithm. Typical approaches involve bootstrapping or cross-validation. However, we demonstrate that bootstrap-based approaches often fail and standard cross-validation estimators may perform poorly. We provide a general study of cross-validation-based estimators that highlights the source of this poor performance, and propose an alternative framework for estimation using techniques from the efficiency theory literature. We provide a theorem establishing the weak convergence of our estimators. The general theorem is applied in detail to two specific examples and we discuss possible extensions to other parameters of interest. For the two explicit examples that we consider, our estimators demonstrate remarkable finite-sample improvements over standard approaches. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1668794 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1917-1932
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1668794
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().