EconPapers    
Economics at your fingertips  
 

Modeling and Regionalization of China’s PM2.5 Using Spatial-Functional Mixture Models

Decai Liang, Haozhe Zhang, Xiaohui Chang and Hui Huang

Journal of the American Statistical Association, 2021, vol. 116, issue 533, 116-132

Abstract: Abstract–Severe air pollution affects billions of people around the world, particularly in developing countries such as China. Effective emission control policies rely primarily on a proper assessment of air pollutants and accurate spatial clustering outcomes. Unfortunately, emission patterns are difficult to observe as they are highly confounded by many meteorological and geographical factors. In this study, we propose a novel approach for modeling and clustering PM 2.5 concentrations across China. We model observed concentrations from monitoring stations as spatially dependent functional data and assume latent emission processes originate from a functional mixture model with each component as a spatio-temporal process. Cluster memberships of monitoring stations are modeled as a Markov random field, in which confounding effects are controlled through energy functions. The superior performance of our approach is demonstrated using extensive simulation studies. Our method is effective in dividing China and the Beijing-Tianjin-Hebei region into several regions based on PM 2.5 concentrations, suggesting that separate local emission control policies are needed. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1764363 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:533:p:116-132

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1764363

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:116-132