EconPapers    
Economics at your fingertips  
 

A Penalized Regression Framework for Building Polygenic Risk Models Based on Summary Statistics From Genome-Wide Association Studies and Incorporating External Information

Ting-Huei Chen, Nilanjan Chatterjee, Maria Teresa Landi and Jianxin Shi

Journal of the American Statistical Association, 2021, vol. 116, issue 533, 133-143

Abstract: Large-scale genome-wide association studies (GWAS) provide opportunities for developing genetic risk prediction models that have the potential to improve disease prevention, intervention or treatment. The key step is to develop polygenic risk score (PRS) models with high predictive performance for a given disease, which typically requires a large training dataset for selecting truly associated single nucleotide polymorphisms (SNPs) and estimating effect sizes accurately. Here, we develop a comprehensive penalized regression for fitting l 1 regularized regression models to GWAS summary statistics. We propose incorporating pleiotropy and annotation information into PRS (PANPRS) development through suitable formulation of penalty functions and associated tuning parameters. Extensive simulations show that PANPRS performs equally well or better than existing PRS methods when no functional annotation or pleiotropy is incorporated. When functional annotation data and pleiotropy are informative, PANPRS substantially outperforms existing PRS methods in simulations. Finally, we applied our methods to build PRS for type 2 diabetes and melanoma and found that incorporating relevant functional annotations and GWAS of genetically related traits improved prediction of these two complex diseases. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1764849 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:533:p:133-143

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1764849

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:133-143