Selecting and Ranking Individualized Treatment Rules With Unmeasured Confounding
Bo Zhang,
Jordan Weiss,
Dylan S. Small and
Qingyuan Zhao
Journal of the American Statistical Association, 2021, vol. 116, issue 533, 295-308
Abstract:
It is common to compare individualized treatment rules based on the value function, which is the expected potential outcome under the treatment rule. Although the value function is not point-identified when there is unmeasured confounding, it still defines a partial order among the treatment rules under Rosenbaum’s sensitivity analysis model. We first consider how to compare two treatment rules with unmeasured confounding in the single-decision setting and then use this pairwise test to rank multiple treatment rules. We consider how to, among many treatment rules, select the best rules and select the rules that are better than a control rule. The proposed methods are illustrated using two real examples, one about the benefit of malaria prevention programs to different age groups and another about the effect of late retirement on senior health in different gender and occupation groups. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1736083 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:533:p:295-308
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1736083
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().