EconPapers    
Economics at your fingertips  
 

Personalized Policy Learning Using Longitudinal Mobile Health Data

Xinyu Hu, Min Qian, Bin Cheng and Ying Kuen Cheung

Journal of the American Statistical Association, 2021, vol. 116, issue 533, 410-420

Abstract: Personalized policy represents a paradigm shift one decision rule for all users to an individualized decision rule for each user. Developing personalized policy in mobile health applications imposes challenges. First, for lack of adherence, data from each user are limited. Second, unmeasured contextual factors can potentially impact on decision making. Aiming to optimize immediate rewards, we propose using a generalized linear mixed modeling framework where population features and individual features are modeled as fixed and random effects, respectively, and synthesized to form the personalized policy. The group lasso type penalty is imposed to avoid overfitting of individual deviations from the population model. We examine the conditions under which the proposed method work in the presence of time-varying endogenous covariates, and provide conditional optimality and marginal consistency results of the expected immediate outcome under the estimated policies. We apply our method to develop personalized push (“prompt”) schedules in 294 app users, with the goal to maximize the prompt response rate given past app usage and other contextual factors. The proposed method compares favorably to existing estimation methods including using the R function “glmer” in a simulation study. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1785476 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:533:p:410-420

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1785476

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:410-420