Bayesian Regression With Undirected Network Predictors With an Application to Brain Connectome Data
Sharmistha Guha and
Abel Rodriguez
Journal of the American Statistical Association, 2021, vol. 116, issue 534, 581-593
Abstract:
This article focuses on the relationship between a measure of creativity and the human brain network for subjects in a brain connectome dataset obtained using a diffusion weighted magnetic resonance imaging procedure. We identify brain regions and interconnections that have a significant effect on creativity. Brain networks are often expressed in terms of symmetric adjacency matrices, with row and column indices of the matrix representing the regions of interest (ROI), and a cell entry signifying the estimated number of fiber bundles connecting the corresponding row and column ROIs. Current statistical practices for regression analysis with the brain network as the predictor and the measure of creativity as the response typically vectorize the network predictor matrices prior to any analysis, thus failing to account for the important structural information in the network. This results in poor inferential and predictive performance in presence of small sample sizes. To answer the scientific questions discussed above, we develop a flexible Bayesian framework that avoids reshaping the network predictor matrix, draws inference on brain ROIs and interconnections significantly related to creativity, and enables accurate prediction of creativity from a brain network. A novel class of network shrinkage priors for the coefficient corresponding to the network predictor is proposed to achieve these goals simultaneously. The Bayesian framework allows characterization of uncertainty in the findings. Empirical results in simulation studies illustrate substantial inferential and predictive gains of the proposed framework in comparison with the ordinary high-dimensional Bayesian shrinkage priors and penalized optimization schemes. Our framework yields new insights into the relationship of brain regions with creativity, also providing the uncertainty associated with the scientific findings. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1772079 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:581-593
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1772079
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().