EconPapers    
Economics at your fingertips  
 

Log-Linear Bayesian Additive Regression Trees for Multinomial Logistic and Count Regression Models

Jared S. Murray

Journal of the American Statistical Association, 2021, vol. 116, issue 534, 756-769

Abstract: We introduce Bayesian additive regression trees (BART) for log-linear models including multinomial logistic regression and count regression with zero-inflation and overdispersion. BART has been applied to nonparametric mean regression and binary classification problems in a range of settings. However, existing applications of BART have been mostly limited to models for Gaussian “data,” either observed or latent. This is primarily because efficient MCMC algorithms are available for Gaussian likelihoods. But while many useful models are naturally cast in terms of latent Gaussian variables, many others are not—including models considered in this article. We develop new data augmentation strategies and carefully specified prior distributions for these new models. Like the original BART prior, the new prior distributions are carefully constructed and calibrated to be flexible while guarding against overfitting. Together the new priors and data augmentation schemes allow us to implement an efficient MCMC sampler outside the context of Gaussian models. The utility of these new methods is illustrated with examples and an application to a previously published dataset. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1813587 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:756-769

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1813587

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:756-769