Inference on a New Class of Sample Average Treatment Effects
Jasjeet S. Sekhon and
Yotam Shem-Tov
Journal of the American Statistical Association, 2021, vol. 116, issue 534, 798-804
Abstract:
We derive new variance formulas for inference on a general class of estimands of causal average treatment effects in a randomized control trial. We generalize the seminal work of Robins and show that when the researcher’s objective is inference on sample average treatment effect of the treated (SATT), a consistent variance estimator exists. Although this estimand is equal to the sample average treatment effect (SATE) in expectation, potentially large differences in both accuracy and coverage can occur by the change of estimand, even asymptotically. Inference on SATE, even using a conservative confidence interval, provides incorrect coverage of SATT. We demonstrate the applicability of the new theoretical results using an empirical application with hundreds of online experiments with an average sample size of approximately 100 million observations per experiment. An R package, estCI, that implements all the proposed estimation procedures is available. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1730854 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:798-804
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1730854
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().