Intrinsic Wavelet Regression for Curves of Hermitian Positive Definite Matrices
Joris Chau and
Rainer von Sachs
Journal of the American Statistical Association, 2021, vol. 116, issue 534, 819-832
Abstract:
Intrinsic wavelet transforms and wavelet estimation methods are introduced for curves in the non-Euclidean space of Hermitian positive definite matrices, with in mind the application to Fourier spectral estimation of multivariate stationary time series. The main focus is on intrinsic average-interpolation wavelet transforms in the space of positive definite matrices equipped with an affine-invariant Riemannian metric, and convergence rates of linear wavelet thresholding are derived for intrinsically smooth curves of Hermitian positive definite matrices. In the context of multivariate Fourier spectral estimation, intrinsic wavelet thresholding is equivariant under a change of basis of the time series, and nonlinear wavelet thresholding is able to capture localized features in the spectral density matrix across frequency, always guaranteeing positive definite estimates. The finite-sample performance of intrinsic wavelet thresholding is assessed by means of simulated data and compared to several benchmark estimators in the Riemannian manifold. Further illustrations are provided by examining the multivariate spectra of trial-replicated brain signal time series recorded during a learning experiment. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1700129 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:819-832
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1700129
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().