EconPapers    
Economics at your fingertips  
 

Intrinsic Wavelet Regression for Curves of Hermitian Positive Definite Matrices

Joris Chau and Rainer von Sachs

Journal of the American Statistical Association, 2021, vol. 116, issue 534, 819-832

Abstract: Intrinsic wavelet transforms and wavelet estimation methods are introduced for curves in the non-Euclidean space of Hermitian positive definite matrices, with in mind the application to Fourier spectral estimation of multivariate stationary time series. The main focus is on intrinsic average-interpolation wavelet transforms in the space of positive definite matrices equipped with an affine-invariant Riemannian metric, and convergence rates of linear wavelet thresholding are derived for intrinsically smooth curves of Hermitian positive definite matrices. In the context of multivariate Fourier spectral estimation, intrinsic wavelet thresholding is equivariant under a change of basis of the time series, and nonlinear wavelet thresholding is able to capture localized features in the spectral density matrix across frequency, always guaranteeing positive definite estimates. The finite-sample performance of intrinsic wavelet thresholding is assessed by means of simulated data and compared to several benchmark estimators in the Riemannian manifold. Further illustrations are provided by examining the multivariate spectra of trial-replicated brain signal time series recorded during a learning experiment. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1700129 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:819-832

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1700129

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:819-832