EconPapers    
Economics at your fingertips  
 

On the Length of Post-Model-Selection Confidence Intervals Conditional on Polyhedral Constraints

Danijel Kivaranovic and Hannes Leeb

Journal of the American Statistical Association, 2021, vol. 116, issue 534, 845-857

Abstract: Valid inference after model selection is currently a very active area of research. The polyhedral method, introduced in an article by Lee et al., allows for valid inference after model selection if the model selection event can be described by polyhedral constraints. In that reference, the method is exemplified by constructing two valid confidence intervals when the Lasso estimator is used to select a model. We here study the length of these intervals. For one of these confidence intervals, which is easier to compute, we find that its expected length is always infinite. For the other of these confidence intervals, whose computation is more demanding, we give a necessary and sufficient condition for its expected length to be infinite. In simulations, we find that this sufficient condition is typically satisfied, unless the selected model includes almost all or almost none of the available regressors. For the distribution of confidence interval length, we find that the κ-quantiles behave like 1/(1−κ) for κ close to 1. Our results can also be used to analyze other confidence intervals that are based on the polyhedral method.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1732989 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:845-857

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1732989

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:845-857