Transformed Dynamic Quantile Regression on Censored Data
Chi Wing Chu,
Tony Sit and
Gongjun Xu
Journal of the American Statistical Association, 2021, vol. 116, issue 534, 874-886
Abstract:
We propose a class of power-transformed linear quantile regression models for time-to-event observations subject to censoring. By introducing a process of power transformation with different transformation parameters at individual quantile levels, our framework relaxes the assumption of logarithmic transformation on survival times and provides dynamic estimation of various quantile levels. With such formulation, our proposal no longer requires the potentially restrictive global linearity assumption imposed on a class of existing inference procedures for censored quantile regression. Uniform consistency and weak convergence of the proposed estimator as a process of quantile levels are established via the martingale-based argument. Numerical studies are presented to illustrate the outperformance of the proposed estimator over existing contenders under various settings.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1695623 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:874-886
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1695623
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().