EconPapers    
Economics at your fingertips  
 

Global and Simultaneous Hypothesis Testing for High-Dimensional Logistic Regression Models

Rong Ma, T. Tony Cai and Hongzhe Li

Journal of the American Statistical Association, 2021, vol. 116, issue 534, 984-998

Abstract: High-dimensional logistic regression is widely used in analyzing data with binary outcomes. In this article, global testing and large-scale multiple testing for the regression coefficients are considered in both single- and two-regression settings. A test statistic for testing the global null hypothesis is constructed using a generalized low-dimensional projection for bias correction and its asymptotic null distribution is derived. A lower bound for the global testing is established, which shows that the proposed test is asymptotically minimax optimal over some sparsity range. For testing the individual coefficients simultaneously, multiple testing procedures are proposed and shown to control the false discovery rate and falsely discovered variables asymptotically. Simulation studies are carried out to examine the numerical performance of the proposed tests and their superiority over existing methods. The testing procedures are also illustrated by analyzing a dataset of a metabolomics study that investigates the association between fecal metabolites and pediatric Crohn’s disease and the effects of treatment on such associations. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1699421 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:984-998

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2019.1699421

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:984-998