EconPapers    
Economics at your fingertips  
 

Multivariate Postprocessing Methods for High-Dimensional Seasonal Weather Forecasts

Claudio Heinrich, Kristoffer H. Hellton, Alex Lenkoski and Thordis L. Thorarinsdottir

Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1048-1059

Abstract: Abstract–Seasonal weather forecasts are crucial for long-term planning in many practical situations and skillful forecasts may have substantial economic and humanitarian implications. Current seasonal forecasting models require statistical postprocessing of the output to correct systematic biases and unrealistic uncertainty assessments. We propose a multivariate postprocessing approach using covariance tapering, combined with a dimension reduction step based on principal component analysis for efficient computation. Our proposed technique can correctly and efficiently handle nonstationary, non-isotropic and negatively correlated spatial error patterns, and is applicable on a global scale. Further, a moving average approach to marginal postprocessing is shown to flexibly handle trends in biases caused by global warming, and short training periods. In an application to global sea surface temperature forecasts issued by the Norwegian climate prediction model, our proposed methodology is shown to outperform known reference methods. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1769634 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1048-1059

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1769634

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1048-1059