Marginalized Frailty-Based Illness-Death Model: Application to the UK-Biobank Survival Data
Malka Gorfine,
Nir Keret,
Asaf Ben Arie,
David Zucker and
Li Hsu
Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1155-1167
Abstract:
The UK Biobank is a large-scale health resource comprising genetic, environmental, and medical information on approximately 500,000 volunteer participants in the United Kingdom, recruited at ages 40–69 during the years 2006–2010. The project monitors the health and well-being of its participants. This work demonstrates how these data can be used to yield the building blocks for an interpretable risk-prediction model, in a semiparametric fashion, based on known genetic and environmental risk factors of various chronic diseases, such as colorectal cancer. An illness-death model is adopted, which inherently is a semi-competing risks model, since death can censor the disease, but not vice versa. Using a shared-frailty approach to account for the dependence between time to disease diagnosis and time to death, we provide a new illness-death model that assumes Cox models for the marginal hazard functions. The recruitment procedure used in this study introduces delayed entry to the data. An additional challenge arising from the recruitment procedure is that information coming from both prevalent and incident cases must be aggregated. Lastly, we do not observe any deaths prior to the minimal recruitment age, 40. In this work, we provide an estimation procedure for our new illness-death model that overcomes all the above challenges. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1831922 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1155-1167
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1831922
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().