Scalable Collaborative Ranking for Personalized Prediction
Ben Dai,
Xiaotong Shen,
Junhui Wang and
Annie Qu
Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1215-1223
Abstract:
Personalized prediction presents an important yet challenging task, which predicts user-specific preferences on a large number of items given limited information. It is often modeled as certain recommender systems focusing on ordinal or continuous ratings, as in collaborative filtering and content-based filtering. In this article, we propose a new collaborative ranking system to predict most-preferred items for each user given search queries. Particularly, we propose a ψ-ranker based on ranking functions incorporating information on users, items, and search queries through latent factor models. Moreover, we show that the proposed nonconvex surrogate pairwise ψ-loss performs well under four popular bipartite ranking losses, such as the sum loss, pairwise zero-one loss, discounted cumulative gain, and mean average precision. We develop a parallel computing strategy to optimize the intractable loss of two levels of nonconvex components through difference of convex programming and block successive upper-bound minimization. Theoretically, we establish a probabilistic error bound for the ψ-ranker and show that its ranking error has a sharp rate of convergence in the general framework of bipartite ranking, even when the dimension of the model parameters diverges with the sample size. Consequently, this result also indicates that the ψ-ranker performs better than two major approaches in bipartite ranking: pairwise ranking and scoring. Finally, we demonstrate the utility of the ψ-ranker by comparing it with some strong competitors in the literature through simulated examples as well as Expedia booking data. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1691562 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1215-1223
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1691562
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().