Optimal Estimation of Wasserstein Distance on a Tree With an Application to Microbiome Studies
Shulei Wang,
T. Tony Cai and
Hongzhe Li
Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1237-1253
Abstract:
The weighted UniFrac distance, a plug-in estimator of the Wasserstein distance of read counts on a tree, has been widely used to measure the microbial community difference in microbiome studies. Our investigation however shows that such a plug-in estimator, although intuitive and commonly used in practice, suffers from potential bias. Motivated by this finding, we study the problem of optimal estimation of the Wasserstein distance between two distributions on a tree from the sampled data in the high-dimensional setting. The minimax rate of convergence is established. To overcome the bias problem, we introduce a new estimator, referred to as the moment-screening estimator on a tree (MET), by using implicit best polynomial approximation that incorporates the tree structure. The new estimator is computationally efficient and is shown to be minimax rate-optimal. Numerical studies using both simulated and real biological datasets demonstrate the practical merits of MET, including reduced biases and statistically more significant differences in microbiome between the inactive Crohn’s disease patients and the normal controls. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1699422 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1237-1253
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1699422
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().