Multiple Systems Estimation for Sparse Capture Data: Inferential Challenges When There Are Nonoverlapping Lists
Lax Chan,
Bernard W. Silverman and
Kyle Vincent
Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1297-1306
Abstract:
Multiple systems estimation strategies have recently been applied to quantify hard-to-reach populations, particularly when estimating the number of victims of human trafficking and modern slavery. In such contexts, it is not uncommon to see sparse or even no overlap between some of the lists on which the estimates are based. These create difficulties in model fitting and selection, and we develop inference procedures to address these challenges. The approach is based on Poisson log-linear regression modeling. Issues investigated in detail include taking proper account of data sparsity in the estimation procedure, as well as the existence and identifiability of maximum likelihood estimates. A stepwise method for choosing the most suitable parameters is developed, together with a bootstrap approach to finding confidence intervals for the total population size. We apply the strategy to two empirical datasets of trafficking in US regions, and find that the approach results in stable, reasonable estimates. An accompanying R software implementation has been made publicly available. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2019.1708748 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1297-1306
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2019.1708748
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().